Delft University of Technology Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer A 3-D optical study

نویسندگان

  • NASIM REZAEI
  • OLINDO ISABELLA
  • ZEGER VROON
  • MIRO ZEMAN
چکیده

A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless dielectric spacer between Mo and CIGS, whose optical properties were varied. We show that such a spacer with low refractive index and proper thickness can significantly reduce absorption in Mo in the long wavelength regime and improve the device’s rear reflectance, thus leading to enhanced light absorption in the CIGS layer. Therefore, we optimized a realistic two-layer MgF2 / Al2O3 dielectric spacer to exploit (i) the passivation properties of ultra-thin Al2O3 on the CIGS side for potential high open-circuit voltage and (ii) the low refractive index of MgF2 on the Mo side to reduce its optical losses. Combining our realistic spacer with optically-optimized point contacts increases the implied photocurrent density of a 750 nm-thick CIGS layer by 10% for the wavelengths between 700 and 1150 nm with respect to the reference cell. The elimination of plasmonic resonances in the new structure leads to a higher electric field magnitude at the bottom of CIGS layer and justifies the improved optical performance. © 2017 Optical Society of America OCIS codes: (040.5350) Photovoltaic; (310.6860) Thin films, optical properties; (240.6680) Surface plasmons. References and links 1. D. Herrmann, P. Kratzert, S. Weeke, M. Zimmer, J. Djordjevic-Reiss, R. Hunger, P. Lindberg, E. Wallin, O. Lundberg, and L. Stolt, “CIGS module manufacturing with high deposition rates and efficiencies,” in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (IEEE, 2014), pp. 2775–2777. 2. H. Sugimoto, “High efficiency and large volume production of CIS-based modules,” in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (IEEE, 2014), pp. 2767–2770. 3. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(8), 583– 586 (2016). 4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017). 5. C. Onwudinanti, R. Vismara, O. Isabella, L. Grenet, F. Emieux, and M. Zeman, “Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells,” Opt. Express 24(6), A693–A707 (2016). 6. C. van Lare, G. Yin, A. Polman, and M. Schmid, “Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns,” ACS Nano 9(10), 9603–9613 (2015). 7. J. Krc, M. Sever, A. Campa, Z. Lokar, B. Lipovsek, and M. Topic, “Optical confinement in chalcopyrite based solar cells,” Thin Solid Films, in press (2016). 8. J. Pettersson, T. Törndahl, C. Platzer-Björkman, A. Hultqvist, and M. Edoff, “The Influence of Absorber Thickness on Cu(In,Ga)Se Solar Cells With Different Buffer Layers,” IEEE J. Photovoltaics 3(4), 1376–1382 (2013). 9. Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy, P. Tran-Van, A. Etcheberry, G. Voorwinden, and B. Dimmler, “Thinning of CIGS solar cells: Part II: Cell characterizations,” Thin Solid Films 519(21), 7212–7215 (2011). 10. E. Jarzembowski, M. Maiberg, F. Obereigner, K. Kaufmann, S. Krause, and R. Scheer, “Optical and electrical characterization of Cu(In,Ga)Se2 thin film solar cells with varied absorber layer thickness,” Thin Solid Films Vol. 26, No. 2 | 22 Jan 2018 | OPTICS EXPRESS A39 #304563 https://doi.org/10.1364/OE.26.000A39 Journal © 2018 Received 10 Aug 2017; revised 26 Oct 2017; accepted 21 Nov 2017; published 4 Dec 2017 576, 75–80 (2015). 11. K. Orgassa, H. W. Schock, and J. H. Werner, “Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells,” Thin Solid Films 431, 387–391 (2003). 12. T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative Assessment of Optical Gain and Loss in Submicron-Textured CuIn1−xGaxSe2 Solar Cells Fabricated by Three-Stage Coevaporation,” Phys. Rev. Appl. 2(3), 34012 (2014). 13. B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Gunnarsson, I. Pilch, U. Helmersson, R. Kotipalli, and F. Henry, “Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 582, 300–303 (2015). 14. B. Vermang, V. Fjällström, J. Pettersson, P. Salomé, and M. Edoff, “Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts,” Sol. Energy Mater. Sol. Cells 117, 505–511 (2013). 15. P. Casper, R. Hünig, G. Gomard, O. Kiowski, C. Reitz, U. Lemmer, M. Powalla, and M. Hetterich, “Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer,” Phys. status solidi (RRL)-Rapid Res. Lett. 10(5), 376–380 (2016). 16. Z. C. Holman, A. Descoeudres, S. De Wolf, and C. Ballif, “Record infrared internal quantum efficiency in silicon heterojunction solar cells with dielectric/metal rear reflectors,” IEEE J. Photovoltaics 3(4), 1243–1249 (2013). 17. V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 64508 (2013). 18. Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013). 19. B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry, and D. Flandre, “Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells,” Prog. Photovolt. Res. Appl. 22(10), 1023–1029 (2014). 20. B. Vermang, J. T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara, and S. Sadewasser, “Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se Solar Cells,” IEEE J. Photovoltaics 4(6), 1644–1649 (2014). 21. O. Lundberg, M. Bodegård, J. Malmström, and L. Stolt, “Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance,” Prog. Photovolt. Res. Appl. 11(2), 77–88 (2003). 22. M. Burghoorn, B. Kniknie, J. van Deelen, M. Xu, Z. Vroon, R. van Ee, R. van de Belt, and P. Buskens, “Improving the efficiency of copper indium gallium (Di-) selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide,” AIP Adv. 4(12), 127154 (2014). 23. H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988). 24. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007). 25. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012). 26. F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 44502 (2009). 27. J.-H. Yoon, S. Cho, W. M. Kim, J.-K. Park, Y.-J. Baik, T. S. Lee, T.-Y. Seong, and J. Jeong, “Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity,” Sol. Energy Mater. Sol. Cells 95(11), 2959–2964 (2011). 28. O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013). 29. A. Smets, K. Jäger, O. Isabella, R. van Swaaij, and M. Zeman, Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems (UIT Cambridge Limited, 2016). 30. R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Opt. Express 22(104 Suppl 4), A1023–A1028 (2014). 31. F. Mollica, J. Goffard, M. Jubault, F. Donsanti, S. Collin, A. Cattoni, L. Lombez, N. Naghavi, R. Edf, I. Umr, and D. Renaissance, “Comparative study of patterned TiO2 and Al2O3 layers as passivated back-contact for ultrathin Cu(In,Ga)Se2 solar cells,” in Photovoltaic Specialists Conference (PVSC) (IEEE, 2016), pp. 6–10. 32. G. Dingemans and W. M. M. Kessels, “Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film 30(4), 40802 (2012). 33. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984). 34. O. Poncelet, R. Kotipalli, B. Vermang, A. Macleod, L. A. Francis, and D. Flandre, “Optimisation of rear reflectance in ultra-thin CIGS solar cells towards> 20% efficiency,” Sol. Energy 146, 443–452 (2017). 35. Z. C. Holman, M. Filipič, A. Descoeudres, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 13107 (2013). 36. F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 64509 (2008). 37. B. Vermang, V. Fjällström, X. Gao, and M. Edoff, “Improved Rear Surface Passivation of Cu(In,Ga)Se2 Solar Cells: A Combination of an Al2O3 Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts,” IEEE J. Photovoltaics 4(1), 486–492 (2014). Vol. 26, No. 2 | 22 Jan 2018 | OPTICS EXPRESS A40

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer: a 3-D optical study.

A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless dielectric spacer between Mo and CIGS, whose optical properties were varied. We show that such a spacer wi...

متن کامل

Improvement of light harvesting by inserting an optical spacer (ZnO) in polymer bulk heterojunction solar cells: A theoretical and experimental study

By introducing a thin ZnO layer as an optical spacer, we have demonstrated that inserting this layer between an active layer and a reflective electrode results in a re-distribution of the optical electric field inside bulk heterojunction solar cells. A theoretical analysis by optical modeling showed that the thin ZnO layer could shift the position of the maximum of the electric field into the a...

متن کامل

Fabrication Of Cu(In,Ga)Se2 Solar Cells With In2S3 Buffer Layer By Two Stage Process

Cu(In,Ga)Se2 thin films (CIGS) on metallic substrate (titanium, molybdenum, aluminum, stainless steel) were prepared by a two-step selenization of Co-evaporated metallic precursors in Se-containing environment under N2 gas flow. Structural properties of prepared thin film were studied. To characterize the optical quality and intrinsic defect nature low-temperature photoluminescence, were perfor...

متن کامل

Improving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires

In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...

متن کامل

Mono-Mono-Mono and Bi-Bi-Bi three-layer graphene systems’ optical conductivity

Investigating the longitudinal optical conductivity of graphene systems, which is the mostimportant property for opto-electronic devices, for three-layer graphene systems theoretically and numerically is the main purpose of this study. Each layer can be mono- or bi-layer graphene. Separation between layers has been denoted by d, selected to be about ten nanometers. The carrier densities i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018